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A general method for solving game problems of pursuit is proposed for dynamical systems with Volterra evolution. The method 
makes use of resolving functions [1] and the tools of the theory of set-valued mappings. The scheme proposed covers a wide 
range of functional-differential systems, such as integral, integrodifferential and differential-difference systems of equations 
defining the dynamics of conflict-controlled processes. A more detailed study is made of game problems for systems with 
Riemann-Liouville fractional derivatives and regularized Dzhrbashyan-Nersesyan derivatives ("fractal" games). Asymptotic 
representations of generalized Mittag-L~ffler functions are used in the context of the method to establish sufficient conditions 
for the solvability of game problems. © 2004 Elsevier Ltd. All rights reserved. 

The theory of differential games presents numerous fundamental techniques that can be used to establish 
conditions for the solvability of pursuit and evasion problems in suitable classes of strategies [2-9]. 
Prominent among these techniques are those developed by N. N. Krasovskii and his successors. 
Depending on the degree to which the players are mutually informed as to the state of the process and 
the controls chosen by the opponent, the mathematical tools used may differ. The method of resolving 
functions and its diverse modifications [1, 10] is conceptually close to Pontryagin's first direct method 
[3, 6]. It has recently been subject to active development and is being used to solve some very complicated 
game problems, such as problems of group and successive pursuit and problems with phase constraints 
[1, 7]. In particular, the method substantiates the classical rule of parallel pursuit in a fairly wide range 
of problems [11]. Its principal advantages are its universality and the possibility of obtaining effectively 
verifiable sufficient conditions for terminating the game. 

1. FORMULATION OF THE PROBLEM, AUXILIARY RESULTS, 
AND SCHEME OF THE METHOD 

Let R n denote a real Euclidean n-space and R+ = {t: t > 0} the positive real line. Consider the process 
described by the equation 

t 

z(t)  = g(t)  + If~(t ,  x)~O(u(x), v(x))dx,  t > 0 (1.1) 
0 

The function g(t), g: R+ ~ R n is (Lebesgue-) measurable and bounded for t > 0; the matrix-valued 
function D(t, x), t > x > 0, is measurable as a function of t and summable as a function of x for any 
t ~ R+. The control block is given by the function cp(u, ~), tp: U × V ~ R n, which is jointly continuous 
in its variables on a direct product of non-empty compact sets U and V, that is, U ~ K(Rm), V ~  K(RI) .  
The controls of the players u(x), u; R+ ~ U and v(x), v: R+ ~ Vare measurable functions. 

In addition to process (1.1), we are also given a cylindrical terminal set 

M* = Mo + M (1.2) 

where M 0 is a linear subspace ofR n and M ~ K(L) ,  L being the orthogonal complement of Mo in R n. 
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Player I and II (u and a), respectively) have opposite goals. Player I strives to steer the trajectory of 
process (1.1) to the set (1.2) in minimum time; player II aims to delay, as far as possible, the time at 
which the trajectory reaches the set M*. 

We shall take the side of player I, directing our attention to the opponent's choice of a control - an 
arbitrary measurable function with values in U. In turn, we shall assume that if the game (1.1), (1.2) is 
taking place in an interval [0, 7], then player/ 's  control is measurable function 

u(t) = u(g(T), or(.)), t e [0, T], u(t )~ U (1.3) 

where vt(') = {a~(s): 0 _< s _< t} is the prehistory of the player II's control up to time t. 
The aim of this paper is, considering the process (1.1), (1.2) under an informativeness condition of 

type (1.3), to establish sufficient conditions for the problem to be solvable in player I's favour in a certain 
guaranteed time, to estimate that time, and also to find controls for player I that achieve this result. 

We will now describe a method for solving this problem. 
Let x denote an orthogonal projection from R n into L. Setting 

~(U, v) = {~(u, v): u E U} 

we consider set-valued mappings 

W(t, x, u) = nf~(t, x)~p(U, v), W(t, "c) = ('~ W(t, %, 1)) 
v ~ V  

on the set A x V and A, respectively, where 

A = { ( t , % ) : 0 < x < t < ~ , }  

Pontryagin's condition. The set-valued mapping W(t, x) takes non-empty values on the set A. 
By the continuity of the function q0(u, v) and the condition U ~ K(Rm), the mapping ~p(U, v) is 

continuous with respect to v in the Hausdorff metric. In view of the assumption regarding the matrix- 
valued function £2(t, x), we may conclude [12] that the set-valued mappings W(t, ,, ~) and W(t, x) are 
measurable functions of x. 

Let P(R n) denote the totality of non-empty closed sets in the space R n. Then, obviously, 

W(t, %, o): A x V ~ p(Rn), W(t, %): A + P(R n) 

In that case we shall say that the set-valued mappings W(t, x, ~) and W(t, x) are normal with respect 
to x [12]. 

It follows from Pontryagin's conditions and the results of [1, 12] that, for any t > 0, at least one selector 
7(t, x) ~ W(t, "Q exists which is a measurable function of x. By our assumptions concerning the parameters 
of the process (1.1), the selector T(t, "Q is summable as a function of x, g ~ [0, t], for any fixed t > 0. Put 

t 

~(t, g(t), g(t, -)) = gg(t) + IT(t, %)dx 
0 

where 7(t, "0 is the above-mentioned selector. 
Using the function ~(t, g(t), 7(t, ")), we define a function 

a ( t , x , o )  = sup{a>0:  [ W ( t , x , v ) - T ( t , x ) ] n a [ M - ~ ( t , g ( t ) , T ( t , . ) ) ] ~ O }  (1.4) 

which we call a resolving function [1]. This function will play a key role in what follows. 
By virtue of our assumptions regarding the parameters of the process (1.1), as well as the results of 

[1], the function (1.4) is measurable with respect to ~ and upper semicontinuous with respect to v. 
In what follows we shall be interested in the behaviour of ~(t, x, v) as a function of the variables 

(% ~). We therefore fixt and set or(% a)) = ~(t, % ~). We shall say that the function ~: [0, 7] x V--->R+ 
is superpositionally measurable if, for any measurable function ~(x), ~: [0, 7] ~ V, the superposition 
~(x, ~(x)), ~: [0, T] ~ R+ is a measurable function of z. 

A sufficiently general assumption, guaranteeing that the function ~(x, a)) will be superpositionally 
measurable, is that the function be (L x B)-measurable [13], that is, measurable relative to the cx-algebra 
defined as the product of the (~-algebras L[0, 7] and B(Rn). The elements of this (~-algebra are the subsets 
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of the set [0, 7] x R n generated by sets of the form X x Y, where X is a Lebesgue-measurable subset of 
the interval [0, T] and Y is a Borel-measurable subset of R n. 

We put 

W(T,x, u ) - T ( T , x )  = H(x,u) ,  M - ~ ( T , g ( T ) , T ( T , . ) )  = M l 

and introduce a set-valued mapping 

lI(x, v) = { ~  ~ R÷: H(x, v) n txM~ ~ 0 }  (1.5) 

Then 

H(co) = {x ~ F(co): H(~) n M(co, x) ~ 0} 

We will investigate the properties of set-valued mapping of the form (1.5). 
The following general result generalizes a well-known proposition [12]. 

Lemma 1. Let X ~ P(R~); let F(co), F: X ~ P(Rk), H(co), H: X ~ P(R n) be normal set-valued mappings, 
and M(co, x), M: X x R ~ ~ P(R n) a Carath6odory mapping (i.e. measurable with respect to co and 
continuous with respect to x). Then the mapping 

H(CO) = {x ~ F(O~): H(co) n M(O~, x) ~ 0} 

is normal. 
Putting co = (x, ~), x = a in Lemma 1 and, respectively, F(co) = R+ and M(o), x) = o~4, we infer that 

the mapping ll(x, v) will be (L x B)-measurable, since the mapping H(x, v) is (L × B)-measurable because 
it is Lebesgue-measurable with respect to x and continuous in v. 

We will now show that the function a(x, a)) is (L × B)-measurable. Indeed, since 

¢t(x, v) = sup tx = C(lI(x, v); 1) 

where C(X; p) is the supporting function of X in the direction p, the fact that the function is (L × B)- 
measurable follows from the (L × B)-measurability of the set-valued mapping lI(x, v) [12]. 

Thus, the function a(x, v) is (L × B)-measurable, bounded away from zero and upper semicontinuous 
with respect to v. It can be shown that inf t~(x, v) is a measurable function. 

x ) E V  

The following corollary of (1.4) deserves mention. If t exists for which ~(t, g(t), y(t, .)) ~ M, then 
t~(t, x, "o) = oo for all x E [0, t], aJ E V. 

Define a mapping 

{'  } T(g(.), y(., .)) = t > 0: [ inf o~(t, x, o)dx > 1 (1.6) 
0 

If some t exists such that the integral in (1.1) becomes +oo, the inequality holds automatically. But if 
the inequality in (1.6) does not hold for any t, we put T(g(.), ~. ,  .) = ~ .  

We may thus formulate our main result. 

Theorem 1. Suppose the game (1.1), (1.2) satisfies Pontryagin's condition and t h a t M  = coM, on the 
assumption that, for some measurable and almost everywhere bounded mappingg(t) and x-measurable 
selector "/(t, x), t > x > 0 of a set-valued mapping W(t, x), it is true that T(g('), y(', ")) ¢ O and 
T ~ T(g('), ?(', .), T < +oo. Then the trajectory of the process (1.1) can be steered to the terminal set 
at time T using a control of the form (1.3). 

Proof. We first consider the case ~(T,g(T), 7(T, ")) ~ M. Let x)r(') be an arbitrary measurable function 
with values in V. Proceeding as in the approach described in [1, 10], we define a control function 

t 

h(t) = 1 - fo~(T, x, o(x))dx, t ~ [0, T] 

0 

Since the function tx(T, x, ~)) is (L x B)-measurable, it is superpositionally measurable, that is, the function 
u(T, % ~)(x)) is measurable. On the other hand, by our assumptions concerning the parameters of the 
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process (1.1), (1.2), it is bounded for almost all "c < Tand hence integrable over any finite time interval. 
It follows that h(t) is a continuous, non-increasing function and h(0) = 1. Therefore, by our constructions, 
a time t .  = t(v(.)), t .  e (0, T] exist such that h(t.)  = O. 

We will refer henceforth to the subintervals [0, t . )  and [t., 7] as "active" and "passive", respectively. 
We can describe player/ 's  method of control in each subinterval. To that end, consider the set-valued 
mapping 

U(x, o) = { u •  U: n~(T,x)tp(u,  v ) - ' t ( T , x ) e  tx(T,x, o ) [M-~(T ,g (T) , ' t (T ,  .))]} (1.7) 

Since the function a(T, x, v) is (L × B)-measurable, M ~ K(R n) and the function ~(T, g(T), y(T, .)) is 
bounded, it follows that the mapping ct(T, % v ) [ M -  ~(T, g(T), ~T,  .))] is (L x B)-measurable. In addition, 
the left-hand side of the inclusion relation in (1.7) is obviously an (L × B)-measurable function of 
(% ~)) and a continuous function of u. Hence, by a well-known proposition [12], it follows that the mapping 
U(x, v) is (L x B)-measurable. Consequently, its selector 

u(x, u) = lexmin U(x, v) (1.8) 

is an (L x B)-measurable function. Player Fs control in the active subinterval [0, t . )  may now be defined 
a s  

u(x) = u(x, u(x)) (1.9) 

Since it is (L x B)-measurable, the function u(x, "o) is superpositionally measurable, and consequently 
u(x) is a measurable function. 

Now consider the passive subinterval [t., 7]. Putting a(T, x, ~) - 0 for "c • [t., T], v e V, in expression 
(1.7), we choose player/ ' s  control according to the previously proposed procedure, using relations 
(1.7)-(1.9) 

In the case when ~(T, g(T), v(T, ")) ~ M, player/ 's  control in the interval [0, 7] is chosen by the same 
considerations as in the passive subinterval, that is, in accordance with the scheme (1.7)-(1.9) with 
a(T , ' c ,u ) -O, ' r , e  [0, T ] , u e  V. 

We claim that, if player/ 's  control is defined as (1.9), with allowance for (1.7) and (1.8), then in each 
case the trajectory of the process (1.1) will be steered at time T to the set M*, whatever player II's 
controls. 

It follows from (1.1) that 

T 

= ~g(T) + f~f l (T,  "t)q~(u(X), u('Q)dx (1.10) fez(T) 
o 

We will first analyse the case when ~(T, g(t), 7(T, ")) ~ M. To that end we add and subtract the vector 
T ! ~(T, "c)dx on the right of Eq. (1.10). Using the law described above to select player/ 's  control, we infer 

from (1.10) that 

I ' ] nz(r) • ~(r,  g(r),  v(r ,  .)) 1 f t l (T ,  l~('c))d~ + f t l (T ,  "c, v('Q)Md'c (1.11) 
0 0 

Since M is convex and compact, a(T, % ag(x)) is a non-negative function for x e [0, t , )  and the bracketed 
integral equals 1, it follows that the last integral in inclusion relation (1.11) equals M, and so 
xz(T) e M, or z(T) e M*. 

Let ~(T, g(T), 7(T, .)) e M. Then, in accordance with player/ 's  control law as specified, the inclusion 
xz(T) e M immediately follows from (1.10). 

2. SYSTEMS W I T H  F R A C T I O N A L  D E R I V A T I V E S  

In this section, standard techniques will be used to introduce the classical concepts of fractional integral 
and fractional derivative (FD) (in the Riemann-Liouville sense). Correspondingly, one will then have 
an equation with fractional derivatives (fractional-differential equation), in which the usual Cauchy data 
at the starting time t = 0 must be replaced by a fractional integral of suitable fractional order. This is 
because, generally speaking, the solution of such an equation has a singularity at t = 0, and only such 
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generalized initial data are natural in this case. However, for physical reasons, it is desirable to have 
ordinary Cauchy problems for fractional-differential equations. Dzhrbashyan and Nersesyan have 
proposed a fractional-differential equation in which the Riemann-Liouville derivative are replaced by 
their regularized values and the initial data by ordinary Cauchy data. (In what follows, we shall refer 
to their concept of FDs as Dzhrbashyan-Nersesyan FDs.) 

For 13 e (0, 1), we define the Riemann-Liouville fractional integral of order [3 [14] of a function z(t), 
t > 0, by the formula 

l 

(l~o+Z)(t) = 1 r z(s) , 
~ ( t _ ' ~ - f ~  as 

where F(~) is the Euler Gamma-function. Then the Riemann-Liouville FD of order ~ has the form 

and the regularized Dzhrbashyan-Nersesyan FD of order [3 [11, 15] is defined as 

t-I~ 
(O(f~)z)(t) = (O~o+Z)(t) F(I_~)z(+0) 

With each of the FDs we associate a game problem, as follows. Let the evolution of the conflict, 
controlled process in the first problem be described by a system of differential equations 

Dfl~ = A~+9(u , I ) ) ,  ~ R n, u ~  U, v e  V (2.1) 

with initial conditions 

l l -I~zlt=0 = z0 

In the second problem it is described by the system 

DO)z = A z + l p ( u , v ) ,  z~ R n, 

with initial conditions 

zlt=o = Zo 

(2.2) 

u e  U, o ~  V (2.3) 

(2.4) 

Some symbols have been omitted from the notation of the FDs in (2.1), (2.3) for simplicity. 
Besides the dynamical processes (2.1), (2.3), a terminal set of type (1.2) is given, and the aims of the 

players in each case are analogous to those described above in the general situation. We merely note 
that in problems (2.1), (2.2) and (2.3), (2.4) the pursuer chooses as controls measurable functions 
u(t) = u(~0, ~,(')) and u(t) = U(Zo, ~t(')), respectively. 

We will now find integral representations of the functions 2(t) and z(t). To that end, we first define 
the generalized Mittag-L6ffler matrix-valued function 

B k 

co(n; -- k.o oZr(k  +~1,) 

for any positive p and complex g, where B is an arbitrary square matrix of order n with complex-valued 
elements. The matrix-valued function Ep(B; g) is an entire function of B. 

Theorem 2. With the players' controls selected as shown, the solution of problem (2.1), (2.2) is given 
by the formula 

~(t) = t fj- IEl/fl(Atf~; ~)Z0 + Z2(t) (2.5) 

and the solution of problem (2.3), (2.4) by the formula 

z(t) = El/f~(AtfJ; 1)z0 + z2(t) (2.6) 
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where 
! 

Z2(t) = ] ~ H ( t -  x)F(x)dx 
0 

[2~l(t-~ ) = (t-'ol~-lE~/f~(A(t-.O[l; ~), F(X) = ~(u(X), V(X)) 

(2.7) 

Proof. We first note that the function F(x) is measurable and essential bounded for x > 0. Hence 
the integrals in formulae (2.5) and (2.6) are absolutely convergent, 

The proof consists of two parts. In the first part we shall prove that the first terms in formulae (2.5) 
and (2.6) are solutions of the homogeneous equations satisfying initial conditions (2.2) and (2.4), 
respectively. In the second, we shall show that the second term in formulae (2.5) and (2.6) is a solution 
of the inhomogeneous equations (2.1) and (2.3). 

That the function z2(t) satisfies the zero initial conditions follows immediately from the boundedness 
of the functions E1/~(A(t - x)~; [~) and F(x) and from the fact that [3 > 0. 

Putting 

Zl(t)  = tf~-lE1/I l(Atll; ~)Zo 

we proceed to the following calculations 

( D~l  )( t ) m D[l[ t ~- I El/~( At~ ; I~)Z0] = i " k 13k ] 1 d -13 13-1 A '~  
r ( l - N ~  (t-~) x ~r(Bk+B)d~ = 

"0 k=0 - -  " / 

~-~ 8kAkt ~t-I .  t.,..t . ~-1 ~-~ Ak't ~k' 
= k__~ l~(~k+ 1)2o = A t  ,,~=oF(~k,+~)Z 0 = A~.I(t ) 

We will show that ~.l(t) satisfies the initial conditions.We have 

11 f ~'I('I~) d'[-- ~" Ak, pk ~ , ~ o ^  
( I ' - I ~ . , ) ( t )  = F(  - I ] )Jo(t_x)l~ k_Z~oF(~"~"+ 1) z° "-'> Zo 

Now consider the function 

zl(t) = Ei/~(At~; l )zoffi- EI/~(At~)Zo 

where E1/~(At ~) is the Mittag-l_~ffler matrix-valued function. Then 

,I,(i a'°' / 1 (D(~)Zl)(t) = F(I ' -~ ' )  ~ ( t - x )  = F(~k+ 1) dx - t -~ Zo = 

• ~-~ Ak-lt 13(k-i) 
= akffi,~lF(l~(k_ 1) + 1) z° = Azi(t) 

In addition, the function zl(t) satisfies the initial conditions (2.4), because 

.. ~-~ Akt ~k 
limzl(t) = l l m  L~. ~ - -  = Z 0 
,--,** ,--,ok__-- °=  F(13k + 1) z°  

We now consider the function z2(t ) defined by formula (2.7) and we will show that is satisfies Eqs 
(2.1) and (2.3) with zero initial conditions. We have 

(Dllz2)( t)  = (D(fJ)z2)(t) = F(1-[3) dt  (2.8) 
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where 

= ~'0 )" 

Let us investigate the function ~(t). To do this, we consider the integrals 

.I k = f f (t--'~)-~('C 5)~(k+ l)- I F(s)dsd,~ = 

(2.9) 

0 0  

= I f ( t  x)-I~('c-s)fJ(k+l)-lF(s)dxds, A, = {(s,x): O<s<'c<t}  

At 

The last double integral is absolutely convergent, so that by Fubini's theorem the order of integration 
may be reversed, using Dirichlet's formula. Then 

t 

tk r(1-13)rOk+13) t - s  
= r(13k+ 1) ) F(s)ds (2.10) 

0 

It follows from Eqs (2.9) and (2A0) that 

A' i )  W(t) = F(1-1~) F(l~k+ 1 (t's)l~kF(s)ds 
k=0 0 

Since the function F(t) is measurable and bounded, it follows that W(t) has a derivative almost 
everywhere; evaluating the derivative and substituting the result into expression (2.8), we obtain 
Eq. (2.1) for ~= z2. 

3. FRACTAL GAMES WITH INTEGRAL CONTROL BLOCKS 

Along with the conflict-controlled processes (2.1), (2.2) and (2.3), (2.4), we will consider processes that 
differ from them in having their control blocks in integral form. To be precise: in the case of 
Riemann-Liouville derivatives we consider the process 

D ~  = A~+d~ft), / l-I~lt= 0 = Yo (3.1) 

In the case of regularized Dzhrbashyan-Nersesyan derivatives, the process will be 

where 

D(~)y = Ay + ~(t) ,  Yl,=o = Yo (3.2) 

t 

• (t) = ~(t-'C)~-lq~(u('O, o(x))dx, 0<~/< 1, 0<13< 1 (3.3) 
0 

Theorem 3. With the players' controls selected as shown, the solution of problem (3.1) is given by 
the formula 

~(t) = t f~- IEl/f~(Atf~; 13)~0 + y2(t) (3.4) 

and the solution of problem (3.2) as given by the formula 

y(t) = E~/~(At~; l)y0 + Y2(t) (3.5) 
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where 
t 

Y2(t) = f~"~22(t - '[)¢p(U('f), 17('[))d'[ 
0 (3.6) 

f~22(t - x) = F(y)( t  - x) v+ I~- IE1/I~(A( t _ x)[I; ~/+ 1~) 

Taking the proof of Theorem 2 into consideration, it will surface to show that the function ye(t) is a 
solution of Eqs (3.1) and (3.2) with zero initial conditions. 

Thus, the solutions of game problems with Riemann-Liouville FDs of the type (2.1), (2.2) and (3.1) 
or Dzhrbashyan-Nersesyan FDs of the type (2.3), (2.4) and (3.2) can be represented by formulae (2.5), 
(2.6) and (3.4), (3.5), which is a special case of representation (1.1); consequently, the general method 
presented above may be used to solve each of these problems. 

4. T H E  S O L U T I O N  OF F R A C T A L  G A M E S  W I T H  A S I M P L E  M A T R I X  
AND S P H E R I C A L  C O N T R O L  

To illustrate the method, we will consider some special situations in which the computations can be 
followed through to completion. 

In what follows, in the interests of simplicity and universality of the notation, we shall distinguish 
between the four problems specified above by assigning their parameters index values i , j  = 1, 2. Thus, 
a trajectory z11(t) corresponds to process (2.1) with Riemann-Liouville derivatives without integral 
control block, z12(t) to the same process with integral control block. Again, a trajectory z21(t) corresponds 
to regularized Dzhrbashyan-Nersesyan derivatives without integral control block, and z22(t) to the same 
process with integral control block. 

We then have four processes 

t 

= go( t )  + l£-~ij( t - ' f )9(u(1;) ,  17(x))d'c, i = 1, 2 (4.1) zi j ( t )  
o 

where 

g l l ( t )  = Gll ( t )~o,  gl2( t)  = G12(t)~o (4.2) 

Gll(t) = Gl2(t ) = tl~-IEl/13(At~; [$) 

g21(/) = G21(t)Zo,  g22(t) = G22( t ) y  0 

G2{(t ) = G22(t) = EI/~(At~; 1) 

~ 2 1 ( t - ' ~ )  = ~ l l ( t - ' ~ ) ,  ~ 1 2 ( t - ' ~ )  = [222( t - ' [  ) 

The functions [2ii(t - "¢) are defined by the last expressions in formulae (2.7) and (3.6). 
Let 

A = ~,E, tp(u, 17) = u-17, M* = {0}, U = aS,  a > l ,  V = S (4.3) 

where S is the unit sphere with centre at zero and ~. is a number. Then L = R n and rc is the identity 
operator, given by the identity matrix E. All matrix-valued functions Giy (t) and f2ij(t - x) have the form 

Gij ( t  ) = ~ i j ( t ) E ,  f~ij( t  - "c) = wi j ( t  - z)E;  i, j = 1, 2 

where~,ij(t) and wij(t- 'c)  are scalar functions. We note merely that the matrixB = LE satisfies the equality 

Eo(B;  la) = Ep(k; [t)E 

where Ep(~,; ~t) is the generalized Mittag-L6ffler scalar function [16]. Then 

Wij(t, 'c , 17) = w i j ( t - ' Q ( a S - v  ), Wij( t ,"  Q = ] w i y ( t - x ) { ( a -  1)S 

Consequently, Pontryagin's condition holds for a ___ 1. 
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Put ~iy(t, x) =- O. Then 

^ 0 0 {q(t, gij(t), ~lij(t, .)) = gij(t) = gq(t)zq,  zq ¢: 0 

The quantity 

oqj(t, "~, v)  = sup{~ > 0: o~oq(t)z ° ~ w i j ( t - ' O ( a S -  v)} = 

= (Vo, q)/llqll 2 + ~(Vo, q)2/llq[I 4 + (a~ -IIo0ll2)/llqll 2 

is the greatest root of the quadratic equation 

II o0-  q=ll  = a0 

(4.4) 

n~n o~ii(t, "c, 1)) = 
Ilutl g i " 

and the minimum is achieved at the element 

with respect to c~, where % = wiy(t - "c)v, q = ~,iy(t)z °, ao = Iwij(t - x) la.  
It should be noted that g i ' ( t )  :~ 0 right up to the end of the game The vanishing of this function means 

that the game can be terminated at the time m accordance with Pontryagln s first direct method [1]. 
Obviously 

(a - 1)lwiy( t -  x) I 

~iy(t)Z ° 

0 
zq 

1)ij( t, X) = - s ign  { ~ ij( t ) w ij( t - x ) }  zO [ 

Then the termination time of the game is the least root of the equation 

t 

. -1)w~i(t-X),dxl l = 1 

I(a0 I#.(t)l z° 

since wij(t-  x) are continuous functions; the termination time is defined in each of the cases by the formula 

Tij(z °, 0) = min{t > 0: ~Pq(t) > ~ij} 

z°l ( 4 . 5 )  
~ q = a - 1  

where 
t %(t) = [Iw'~(t~.~)lax, 
o Igij(t)l 

The functions d~ij(t ) take the form 

'rlG.ml_ 'la,2mld~; * , , ( t ) = ~ a , ,  * / 2 ( t )  = ! ~  i = 1, 2 (4.6) 

In what follows, asymptotic representations of the generalized scalar Mittag-L6ffler function will play 
0 an essential role in verifying that the time To.(zil, 0) at which the game terminates from a given initial 

0 state zij is finite. We shall use well-known formulae [16, p. 134] for such a representation of the function 
Ep(x; ~t) for real x, p > 1/2 and any ~t. 

It follows from these formulae that 

P - k  

Ep(x; It) = ~px pO-~)exp(ff)- '~. x_ z ÷ O(ixl-(p÷~)) 
k = 1F(I.t - kp- ) 

(4.7) 

where 2 = 1 for positive x, and X = 0 for negative x. 
In the example considered it is clearly natural to distinguish two cases: ~, > 0 and ~. < 0. 
Let ~ > 0. Then all the generalized Mittag-L6ffler functions occurring in the formulae for dpij(t ) are 

positive. We shall use that fact, as well as the formula [16, p. 120] 
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X 

;Ep(~,xl/~; g)X la- ldx = x~tEp(Xxt/~; g + 1), 

o 

Then the functions ~ij(t) (i = 1, 2) become 

t~El/~(~,t~; ~ + 1) 
• il(t) = Gil(t) ' 

~ > 0 ,  X ~ R  

(4.8) 
_..t~+vgl/15(kt[~; ~ + T + 1) 

~Pi2(t) = 1(~1) Gil(t) 

In formula (4.7) (X = 1), we put p = 1/~,x = Xt ~. Note that then, since [3 e (0, 1), we have p e (1, o~) 
and consequently p > 1/2. Then, using the asymptotic representation 

El/~(~,t~; It) = ~(~J-~t/~t) l-~texp(~Y~t) + ... 

and formulae (4.8), we find the limits of the functions ~ij(t) as t ---> oo. As a result, we conclude that for 
X > 0, the time To.(z °, 0) is finite if the following inequalities hold, respectively: 

f o r / = j  = 1: X -1/[~ > ~u; f o r / =  1,j = 2: F(7)X -(~+ 1)/1~ > ~12; 

f o r / =  2, j  = 1: X -1 > ~21; f o r / = j  = 2: F(7)~, -([5 + ~)/[~ > ~22. 

Now consider the case when g < 0. Setting X = 0, p = 1/~,x = ~,t ~ in formula (4.7) and using asymptotic 
representations of the numerators and denominators of the functions ~ij(t) defined by formulae (4.8) 
for X < 0, we conclude that 

• ij(t)----) ~ a s  t---)**, Vi, j =  1,2 

Thus, the times Tij(z °, 0) defined by formula (4.5) are finite for any z °. (i, j = 1, 2), that is, for the 
process under consideration, if Z, < 0, we obtain complete conflict controllability [1] for all the problems: 
(2.1), (2.2); (2.3), (2.4) (3.1) and (3.2). 

Let ~. = 0. Then, using formulae (4.8) for the functions ~ij(t) (i,j, = 1, 2), as well as the expression 
(4.5), we obtain exact values for the times at which the games end 

Tu(z°i ,  0) = 13~ll, T21(Z01, 0)  = [ F ( ~  + 1)~21] 1/13 

F r ( l ~ + y +  1)~ 7 t/(v+t) 0 F F ( ~ + T +  1)~22 ]u(v+13) 
TI2(Z?2, 0)  = L F(~)F(¥)  -~lzj Tzz(Z22 , 0)  = ' L r (¥ )  l 

We wish to dedicate this paper to Academician N. N. Krasovskii's eightieth birthday. 
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